Thermodynamic efficiency and mechanochemical coupling of F1-ATPase
نویسندگان
چکیده
منابع مشابه
Thermodynamic efficiency and mechanochemical coupling of F1-ATPase.
F(1)-ATPase is a nanosized biological energy transducer working as part of F(o)F(1)-ATP synthase. Its rotary machinery transduces energy between chemical free energy and mechanical work and plays a central role in the cellular energy transduction by synthesizing most ATP in virtually all organisms. However, information about its energetics is limited compared to that of the reaction scheme. Act...
متن کاملElectrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase.
Understanding the nature of energy transduction in life processes requires a quantitative description of the energetics of the conversion of ATP to ADP by ATPases. Previous attempts to do so have provided an interesting insight but could not account for the rotary mechanism by a nonphenomenological structure/energy description. In particular it has been very challenging to account for the obser...
متن کاملChemomechanical coupling of F1-ATPase under hydrolysis conditions
F1-ATPase (F1) is the smallest rotary motor protein that couples ATP hydrolysis/synthesis to rotary motion in a highly reversible manner. F1 is unique compared with other motor proteins because of its high efficiency and reversibility in converting chemical energy into mechanical work. To determine the energy conversion mechanism of F1-ATPase, we developed a novel single-molecule manipulation t...
متن کاملMechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F1-ATPase.
F1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular detail...
متن کاملTorque, chemistry and efficiency in molecular motors: a study of the rotary–chemical coupling in F1-ATPase
Detailed understanding of the action of biological molecular machines must overcome the challenge of gaining a clear knowledge of the corresponding free-energy landscape. An example for this is the elucidation of the nature of converting chemical energy to torque and work in the rotary molecular motor of F1-ATPase. A major part of the challenge involves understanding the rotary-chemical couplin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2011
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1106787108